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1. CLASSES OF GROUPS 
 

§1.1. Definition and Examples 
 Having discussed the many facets of group theory 

from Volume 1, I would like to introduce a very useful 

system of notation which facilitates the further discussion 

of the subject. 

 A class of groups is a collection of groups X such 

that: 

(1) 1  X and 

(1) If G  H then G  X if and only if H  X. 

 

 We call them ‘classes’ rather than ‘sets’ to avoid 

the set-theoretic paradox, known as the Russell Paradox. 
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The word ‘class’ refers to the intuitive concept of a 

collection of things. But we don’t allow classes to be 

elements of other classes. 

 When building up set theory rigorously we have to 

be very careful what we allow to be called a set. The 

Russell Paradox arises if we tried to contemplate the set  

y = {x | x  x} because we would be forced to conclude 

that y  y if and only if y  y. When developing axiomatic 

set theory we consider sets as undefined objects with an 

undefined relation x  y which may or may not hold 

between sets x and y. 

 But here we don’t have to tread carefully because 

our classes are not assumed to be sets, even though their 

elements are sets. 

 As with subsets, we use the same notation,  and 

 for subclasses and proper subclasses. So C  A is a 

compact way of saying that every cyclic group is abelian 

but not every abelian subgroup is cyclic. 

Here 1 is the trivial group. Axiom (2) captures the 

point of view that we consider isomorphic groups to be 

essentially the same group, unless of course if one is a 

subgroup of the other. So we talk about the dihedral group 

of order 8 even though we can build a dihedral group of 

order 8 upon any set of 8 elements. 

 

Examples 1: We’ll consider the following classes: 

I = the class containing just the trivial group. 

F = the class of finite groups; 
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C = the class of cyclic groups; 

A = the class of abelian groups; 

D = the class of all cyclic or dihedral groups (either finite 

or infinite); 

P = the class of all p-groups; 

  = the class of all finite symmetric groups. 

 

We could consider the class G of all groups, but that would 

not be very useful. Nor do we consider the class of all 

permutation groups because that would be the same as G 

because every group is isomorphic to a group of 

permutations. 

 

 We define a group to be an X-group if G  X. 

 

§1.2. Products of Classes 
 If X and Y are group classes we define 

X Y = the class of all groups G such that G has a normal 

subgroup H  X with G/H  Y. 

 

Example 2: D  CC because every cyclic or dihedral 

group G has a normal subgroup H where H is cyclic and 

G/H is cyclic of order 2. But C3  C3  CC yet isn’t cyclic 

or dihedral. 

 

 The multiplication is not quite associative in that 
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X(YZ)  (XY)Z for all classes X, Y, Z, though equality 

doesn’t always hold. 

 

Theorem 1: For all group classes X, Y, Z, 

X(YZ)  (XY)Z. 

Proof: Let G  X(YZ). Then G has a normal subgroup 

H  X such that G/H  YZ. 

Then G/H has a normal subgroup K/H  Y such that 

(G/H)/(K/H)  Z. 

By the 3rd Isomorphism Theorem, 

(G/H)/(K/H)  G/K and so G/K  Z. 

Now K is a normal subgroup of H and so K  XY. 

Hence G  (XY)Z. ☺ 

 

Example 3: V4   A4  S4 so S4  (CC)C. 

But S4  C(CC) because it has no non-trivial cyclic normal 

subgroup. Hence C(CC) is a proper subclass of (CC)C. 

 The trivial class, {1}, acts as the identity for this 

product. The product of group classes is also not 

commutative. 

 

Example 4: S4  AC but S4  CA. 

 

 If X is any group class the we define 

X0 = I, Xn+1 = XnX. 

 

Clearly X1 = X for all group classes. 
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Example 5: Fn = F for all n  1. 

  

§1.3. Subnormal Series and Subgroups 
 If H  G a subnormal series is a series of 

subgroups 

G0 = H < G1 < … < Gn. 

such that each Gi < Gi+1. The quotients of such a 

subnormal series are the non-trivial quotients Gi+1/Gi and 

its length is n. Since the relation of being a normal 

subgroup isn’t transitive the subgroups are normal in the 

next but need not be normal in the whole group. 

 A subgroup H of a group G is defined to be 

subnormal if there exists a subnormal series from H to 

G. In such a case we write H < < G. 

 

Example 6: The series 

(12)(34) < V4 < A4 < S4 

is a subnormal series of length 3, whose quotients are 

isomorphic to C2, C3 and C2 respectively. Hence 

(12)(34) is a subnormal subgroup of S4. 

 

Example 7: The subgroup H = (12) is not a subnormal 

subgroup of S5. This is because the only normal 

subgroups of S5 are 1, A5 and S5 and A5 is simple. 

 The only subnormal series that are possible for S5 

are: 1 < A5 < S5 and 1 < S5. Neither passes through H. 

 

If X is a group class we define X = Xn. 
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If G  X then G  Xn for some n and so there exists a 

subnormal series G0 = 1 < G1 < … < Gn for some n such 

that each Gi+1/Gi  X. Clearly F = F. 

 

Example 8: If X = {Cp} for some prime p then X is the 

class of all finite p-groups. This is because the centre of a 

non-trivial finite p-group G is non-trivial. 

If 1 < H  Z(G) then H  G and G/H is a smaller p-group. 

 

 Clearly (X) = X for any group class, X. I’ve left 

it as an exercise. 

 

§1.4. Closure Operations 
 A closure operation is a function F that takes a 

group class X to a group class FX such that: 

(1) FI = I; 

(2) X  FX; 

(3) FX = F2X. 

 

Examples 9:  

SX = the class of all subgroups of X-groups; 

QX = the class of all quotients of X-groups; 

PX = the class of all groups G that have a normal X-

subgroup with G/H  X. 

 

 If F is a closure operation, a group class X is F-

closed if FX = X. 
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Examples 10: The following table shows which of these 

6 group classes are closed under these 3 closure 

operations. 

 

 I F C A D P  

S        

Q        

P        

 

Most of these are obvious. Note that the only quotient 

groups of Sn are Sn, Sn/An  C2  S2 and 1 = S1 and, in the 

case of n = 4, S4/V4  S3. 

 

Theorem 2: 

(1) If X and Y are S-closed then so is XY.
 

(2) If X and Y are Q-closed then so is XY. 

Proof: 

(1) Suppose that X, Y are S-closed. We prove that XY is 

S-closed. 

Let G  XY and let K  G where K  X and G/K  Y. 

Since HK/K  G/K, HK/K  Y. 
Then by the 2nd Isomorphism Theorem, 

H/HK  HK/K  Y. Hence H/HK  Y. 

Since HK  K, HK  X. 

Thus H XY. 
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(2) Suppose that X, Y are Q-closed. 

Let G  XY and let K  G where K  X and G/K  Y. 

(2) Let G  XY and let K  G where K  X and 

G/K  Y. Let H  G. 

By the 3rd Isomorphism Theorem 

(G/H)/(HK/H)  G/HK  (G/K)/(HK/K)  Y. 

By the 2nd Isomorphism Theorem 

HK/H  K/HK  X. 

Hence G/H  XY. ☺ 

Corollary: 

(1) If X is and Y are S-closed then so is Xn for all n. 

(2) If X is and Y are Q-closed then so is Xn for all n. 

 

Theorem 3: 

(1) If X is S-closed then so is X. 

(2) If X is Q-closed then so is X. 

(3) If X is P-closed then so is X. 

Proof: (1) and (2) follow immediately from the above 

corollary. 

(3) Suppose X is P-closed and suppose that H, G/H  X. 

Then there exists L  G and K  H such that K, H/K, L/H 

and G/L, which is isomorphic to (G/H)/(L/H), all belong 

to X. 

Suppose that K  Xr, H/K  Xs, L/H  Xu and G/L  Xv. 

Then G  Xr+s+u+v and so G  X. ☺ 
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EXERCISES FOR CHAPTER 1 
 

Exercise 1: For each of the following statements 

determine whether it is true or false. 

(1) S3  D. 

(2) D = C2. 

(3) For all group classes X, Y, Z we have X(YZ) = (XY)Z. 

(4) S4  AD. 

(5) (12) is a subnormal subgroup of S4. 

(6) L is N-closed, where NX is the class of all normal 

subgroups of X-groups and L is the class of all finite 

alternating groups, An. 

 

Exercise 2: 

Let K = {S3, A4, S4}. Show that K  C is Q-closed but not 

S-closed. 

 

Exercise 3: 

(a) Find all the subnormal subgroups of S5. 

(b) Find the number of subnormal subgroups of S4. 

(Include S4 itself). 

 

Exercise 4: 

Define products of closure operators by defining 

ABX = A(BX). 

(a) Prove that S2 = S and Q2 = Q. 
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Exercise 5: 

(a) Prove that for all X, SQX  QSX. 

(b) Find group G, H such that if X = {G}, H  QSX but 

H  SQX. 

 

SOLUTIONS FOR CHAPTER 1 
 

Exercise 1: 

(1) TRUE: S3  D6. 

(2) TRUE: D2n = A, B | A2n, B2, BA = A−1B and 

                   D = A, B | B2, BA = A−1B. 

In each case A is a cyclic normal subgroup whose 

quotient is cyclic of order 2. 

(3) FALSE 

(4) TRUE: V4 is a normal subgroup of S4 whose quotient 

is isomorphic to S3 and hence to D6. 

(5) FALSE 

(6) FALSE: V4 is a normal subgroup of A4 but is not, 

itself, isomorphic to an alternating group. 

 

Exercise 2: V4  S4 but, while S4  K, V4  K so K  C 

is not S-closed. 

Quotients of cyclic group as cyclic. 

The proper quotient groups of S3 and A4 are all cyclic. 

The proper quotient groups of S4 are C2 and S3. 
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Exercise 3: 

(a) The only non-trivial subnormal series for S5 are: 

1 < S5 and 1  < A5 < S5 

so the only subnormal subgroups are 1, A5 and S5. 

(b) The subgroups of S4 are: 1, the cyclic subgroups, V4, 

A4, the subgroups isomorphic to S3 and S4. 

 Because A4, V4 and 1 are the only normal 

subgroups of S4 a subnormal series that ends in S4 must 

end in 1 < S4, V4 < S4 or A4 < S4. So 1, V4, A4 and S4 are 

subnormal.  

Now the only longer subnormal series are sections 

of the subnormal series 1 < ()() < V4 < A4 < S4 for 

any one of the 3 cyclic subgroups of the form ()(). 

These 3 subgroups will be subnormal in S4. But no other 

subgroups are possible and so altogether there are 7 such 

subnormal subgroups. 

 

Exercise 4: 

(a) S2 = S:  

If H  K  G then H  G so S2X  SX for any X. 

If H  G then H  G  G and so H  S2X. 

Hence S2X  SX for any X. 

Q2 = Q: A quotient group of the quotient G/K has the 

form (G/K)/(H/K) where H, K  G and K  H. 

By the 3rd Isomorphism Theorem, this is isomorphic to 

G/H and so Q2X  QX for any X. 

Since G/1  G for any G, G/H  (G/1)(H/1) and so 

Q2X  QX for any X. 
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Exercise 5: 

(a) Let A  SQX. Then there exists a group G  X, with 

a normal subgroup K, where S is isomorphic to a 

subgroup of G/K. 

 Now a subgroup of G/K has the form L/K where 

K  L  G. So there exists such an L where L/K  A. But 

this shows that A  QSX. Hence SQX  QSX. 

(b) S3  A4/V4 so S3  QS{A5}. 

Apart from A5/A5, the only quotient of A5 is A5 itself. Yet 

A5 has no subgroup isomorphic to S3. Why not? 

Suppose that H  A5 and H  S3. 

Now S3  D6 = A, B | A3, B2, BA = A−1B. 

The element   A5 that corresponds to A must be a 3-

cycle. Without loss of generality let it be (123). Now the 

permutation , corresponding to B, has order 2, and it 

can’t be a 2-cycle, so it must have cycle structure 

()(). 

Since B−1AB = A−1, −1 = −1 and so  must permute 

{1, 2, 3} and so fix 4, a contradiction. 

 


