1. CLASSES OF GROUPS

§1.1. Definition and Examples

Having discussed the many facets of group theory
from Volume 1, | would like to introduce a very useful
system of notation which facilitates the further discussion
of the subject.

A class of groups is a collection of groups % such

that:
(1)1 e %Xand
()IfG=HthenG e Xifand only ifH e X.

We call them ‘classes’ ather than ;Séts’ to avoid
the set-theoretic paradox, known as the Russell Paradox.
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The word °‘class’ refers to the intuitive concept of a
collection of things. But we don’t allow classes to be
elements of other classes.

When building up set theory rigorously we have to
be very careful what we allow to be called a set. The
Russell Paradox arises if we tried to contemplate the set
y = {x | x ¢ x} because we would be forced to conclude
thaty e yifand only ify ¢ y. When developing axiomatic
set theory we consider sets as undefined objects with an
undefined relation x € y which may or may not hold
between sets x and y.

But here we don’t have to tread carefully because
our classes are not assumed to be sets, even though their
elements are sets.

As with subsets, we use the same notation, < and
c for subclasses and proper subclasses. So € — @ is a
compact way of saying that every cyclic group is abelian
but not every abelian subgroup is cyclic.

Here 1 is the trivial group. Axiom (2) captures the
point of view that we consider isomorphic groups to be
essentially the same group, unless of course if one is a
subgroup of the other. So we talk about the dihedral group
of order 8 even though we can build a dihedral group of
order 8 upon any set of 8 elements.

Examples 1: We’ll consider the following classes:
S = the class containing just the trivial group.
§ = the class of finite groups;
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© = the class of cyclic groups;

@ = the class of abelian groups;

9D = the class of all cyclic or dihedral groups (either finite
or infinite);

9 = the class of all p-groups;

> = the class of all finite symmetric groups.

We could consider the class § of all groups, but that would
not be very useful. Nor do we consider the class of all
permutation groups because that would be the same as §

because every group is isomorphic to a group of
permutations.

We define a group to be an ¥-group if G € .

81.2. Products of Classes

If 5 and % are group classes we define
% % = the class of all groups G such that G has a normal
subgroup H € ¥ with G/H € .

Example 2: 9 < @ because every cyclic or dihedral
group G has a normal subgroup H where H is cyclic and
G/H is cyclic of order 2. But C3 x C3 € CCyet isn’t cyclic
or dihedral.

The multiplication is not quite associative in that
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%(Y9) < (%Y)9 for all classes %, U, 9, though equality
doesn’t always hold.

Theorem 1: For all group classes %, %, 3,

WY < (%3
Proof: Let G € %(%9). Then G has a normal subgroup
H e % such that G/H € 9.
Then G/H has a normal subgroup K/H e % such that
(G/H)/I(K/H) € a.
By the 3" Isomorphism Theorem,
(G/H)/(K/H) = G/K and so G/K € 9.
Now K is a normal subgroup of H and so K € %%.
Hence G e (%%)9. %©

Example 3: V4 <A;<S450 S, € (CO)C.
But S, ¢ ©(CC) because it has no non-trivial cyclic normal
subgroup. Hence ©(CC) is a proper subclass of (CO)C.

The trivial class, {1}, acts as the identity for this
product. The product of group classes is also not
commutative.

Example 4: S, € @ but S, ¢ CQ.

If % is any group class the we define
K0 =g, M1 = 9y,

Clearly %! = & for all group classes.
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Example 5: §" = & forall n > 1.

§1.3. Subnormal Series and Subgroups

If H < G a subnormal series is a series of
subgroups

GO:H<Gl<...<Gn.

such that each Gj < Gij:;. The quotients of such a
subnormal series are the non-trivial quotients Gi.1/Gj and
its length is n. Since the relation of being a normal
subgroup isn’t transitive the subgroups are normal in the
next but need not be normal in the whole group.

A subgroup H of a group G is defined to be
subnormal if there exists a subnormal series from H to
G. In such a case we write H < < G.

Example 6: The series

((12)(34)y < V4 < A4 < Sy
is a subnormal series of length 3, whose quotients are
iIsomorphic to C, C; and C, respectively. Hence
((12)(34)) is a subnormal subgroup of S,.

Example 7: The subgroup H = {(12)) is not a subnormal
subgroup of Ss. This is because the only normal
subgroups of Ss are 1, As and Ss and As is simple.

The only subnormal series that are possible for Ss
are: 1 < As < Ssand 1 < Ss. Neither passes through H.

If % is a group class we define % = UX".
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If G € ¥° then G € %" for some n and so there exists a
subnormal series Go =1 < G; < ... < Gp for some n such
that each Gj:1/Gi € %. Clearly §° = §.

Example 8: If X = {Cy} for some prime p then X is the
class of all finite p-groups. This is because the centre of a
non-trivial finite p-group G is non-trivial.

If 1<H<Z(G)then H <G and G/H is a smaller p-group.

Clearly (5*)* = &~ for any group class, %. I've left
it as an exercise.

§1.4. Closure Operations
A closure operation is a function F that takes a
group class % to a group class FX such that:
1) Fs=;
(2) X< F;,
(3) FX = F?.

Examples 9:
S% = the class of all subgroups of %-groups;

QX = the class of all quotients of %-groups;
PX = the class of all groups G that have a normal %-

subgroup with G/H e .

If F is a closure operation, a group class X is F-
closed if F&X = .
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Examples 10: The following table shows which of these
6 group classes are closed under these 3 closure
operations.

X |2 |2 |
X |2 2|
X |2 |2 |9

S
Q
s)

2 |2 2| @
< |2 |2 | @
< |2 |29
X |2 |X |M

Most of these are obvious. Note that the only quotient
groups of Sy are Sp, Sp/An=C,=S,and 1 =S; and, in the
case of n =4, Sy/V4 = Ss.

Theorem 2:

(1) If X and % are S-closed then so is X%,

(2) If X and Y are Q-closed then so is X%.

Proof:

(1) Suppose that %, % are S-closed. We prove that %% is

S-closed.

Let G € %% and let K <G where K e X and G/K e .
Since HK/K < G/K, HK/K € .

Then by the 2" Isomorphism Theorem,

H/HAK = HK/K € 9. Hence HIHNK e 9.

Since HNK <K, HNK e .

Thus H e %9.
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(2) Suppose that %, % are Q-closed.
Let G € Xy and let K 4G where K e X and G/K € ¥.
(2) Let G € X% and let K < G where K € X and
G/IKe 9. LetH<G.
By the 3™ Isomorphism Theorem

(G/H)/(HK/H) = G/HK e (G/K)/(HK/K) € %.
By the 2" Isomorphism Theorem

HK/H =z K/HNK € .

Hence G/H € ¥¥. %©
Corollary:
(1) If X is and % are S-closed then so is X" for all n.
(2) If X is and % are Q-closed then so is %" for all n.

Theorem 3:

(1) If % is S-closed then so is ™.

(2) If X is Q-closed then so is ™.

(3) If % is P-closed then so is ™.

Proof: (1) and (2) follow immediately from the above
corollary.

(3) Suppose X is P-closed and suppose that H, G/H € X™.

Then there exists L <G and K < H such that K, H/K, L/H
and G/L, which is isomorphic to (G/H)/(L/H), all belong
to &™.

Suppose that K € &', H/K € &, L/H € X" and G/L € ¥".
ThenG € "V andso G € . % ©
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EXERCISES FOR CHAPTER 1

Exercise 1: For each of the following statements
determine whether it is true or false.

(1) Sg e D.

(2) D=

(3) For all group classes %, %, 9 we have X(Y3) = (%%)3.
(4) Sy € @D.

(5) {(12)) is a subnormal subgroup of S,.

(6) £ is N-closed, where N% is the class of all normal
subgroups of %-groups and £ is the class of all finite

alternating groups, An.

Exercise 2:
Let K= {Ss, A4, S4}. Show that I U Cis Q-closed but not
S-closed.

Exercise 3:

(a) Find all the subnormal subgroups of Ss.

(b) Find the number of subnormal subgroups of S,.
(Include S, itself).

Exercise 4:

Define products of closure operators by defining
ABX = A(BY).

(a) Prove that S> = Sand Q? = Q.
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Exercise 5:

(a) Prove that for all %, SQ% < QS%.

(b) Find group G, H such that if X = {G}, H € QS% but
H ¢ SQ%.

SOLUTIONS FOR CHAPTER 1

Exercise 1:
(1) TRUE: S3 = De.
(2) TRUE: Do, = (A, B| A?", B2, BA = A"!B) and
D.. = (A, B| B2 BA = A"B).
In each case (A) is a cyclic normal subgroup whose
quotient is cyclic of order 2.
(3) FALSE
(4) TRUE: V, is a normal subgroup of S, whose quotient
Is isomorphic to Sz and hence to De.
(5) FALSE
(6) FALSE: V, is a normal subgroup of A, but is not,
itself, isomorphic to an alternating group.

Exercise 2: V4 < S, but, while S; € I, V4 ¢ Hso KU €
is not S-closed.

Quotients of cyclic group as cyclic.

The proper quotient groups of Sz and A4 are all cyclic.
The proper quotient groups of S, are C, and Ss.
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Exercise 3:

(@) The only non-trivial subnormal series for Ss are:
1<Ssand1l <As5<Ss

so the only subnormal subgroups are 1, As and Ss.

(b) The subgroups of S, are: 1, the cyclic subgroups, V4,

Ay, the subgroups isomorphic to Sz and S.

Because A4, V4, and 1 are the only normal
subgroups of S, a subnormal series that ends in S; must
endinl<Sy Vs<Ssor Ay<S4 Sol, V4 Asand Sy are
subnormal.

Now the only longer subnormal series are sections
of the subnormal series 1 < {(xx)(xx)) < V4 < Ay < S, for
any one of the 3 cyclic subgroups of the form ((xx)(xx)).
These 3 subgroups will be subnormal in S,. But no other
subgroups are possible and so altogether there are 7 such
subnormal subgroups.

Exercise 4:
(a) S?=S:
If H< K <G then H < G so S?% < SX for any &.
IfH<GthenH<G<GandsoH e $?%.
Hence S?% o S for any .
Q? = Q: A quotient group of the quotient G/K has the
form (G/K)/(H/K) where H, K <G and K < H.
By the 3" Isomorphism Theorem, this is isomorphic to
G/H and so Q%% — Q% for any .
Since G/1 = G for any G, G/H = (G/1)(H/1) and so
Q%% o Q% for any .
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Exercise 5:
(@) Let A € SQ%. Then there exists a group G € %, with
a normal subgroup K, where S is isomorphic to a
subgroup of G/K.

Now a subgroup of G/K has the form L/K where
K <L <G. So there exists such an L where L/K = A. But
this shows that A € QS%. Hence SQ% < QS¥.
(b) S3 = A4/V450 S3 € QS{As}.
Apart from As/As, the only quotient of As is As itself. Yet
As has no subgroup isomorphic to Sz. Why not?
Suppose that H < As and H = Ss.
Now Sz = Ds = (A, B | A%, B2, BA= A"'B).
The element o € As that corresponds to A must be a 3-
cycle. Without loss of generality let it be (123). Now the
permutation 3, corresponding to B, has order 2, and it
can’t be a 2-cycle, so it must have cycle structure
(xx)(xx).
Since B*AB = A%, Bap = ot and so B must permute
{1, 2, 3} and so fix 4, a contradiction.
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